Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage

نویسندگان

  • Johanna Klang
  • Susanne Theuerl
  • Ulrich Szewzyk
  • Markus Huth
  • Rainer Tölle
  • Michael Klocke
چکیده

This study investigated the development of the microbial community during a long-term (337 days) anaerobic digestion of maize and sugar beet silage, two feedstocks that significantly differ in their chemical composition. For the characterization of the microbial dynamics, the community profiling method terminal restriction fragment length polymorphism (TRFLP) in combination with a cloning-sequencing approach was applied. Our results revealed a specific adaptation of the microbial community to the supplied feedstocks. Based on the high amount of complex compounds, the anaerobic conversion rate of maize silage was slightly lower compared with the sugar beet silage. It was demonstrated that members from the phylum Bacteroidetes are mainly involved in the degradation of low molecular weight substances such as sugar, ethanol and acetate, the main compounds of the sugar beet silage. It was further shown that species of the genus Methanosaeta are highly sensitive against sudden stress situations such as a strong decrease in the ammonium nitrogen (NH₄(+)-N) concentration or a drop of the pH value. In both cases, a functional compensation by members of the genera Methanoculleus and/or Methanosarcina was detected. However, the overall biomass conversion of both feedstocks proceeded efficiently as a steady state between acid production and consumption was recorded, which further resulted in an equal biogas yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage

Numerous observations indicate a high flexibility of microbial communities in different biogas reactors during anaerobic digestion. Here, we describe the functional redundancy and structural changes of involved microbial communities in four lab-scale continuously stirred tank reactors (CSTRs, 39°C, 12 L volume) supplied with different mixtures of maize silage (MS) and sugar beet silage (SBS) ov...

متن کامل

Parameters for sustainable and demand-oriented biogas production

............................................................................................................................................. 4 Introduction ........................................................................................................................................ 7 Renewable energies in Germany ..........................................................................

متن کامل

Effects of pressed beet pulp silage inclusion in maize-based rations on performance of high-yielding dairy cows and parameters of rumen fermentation.

Beet pulp contains high amounts of pectins that can reduce the risk of rumen disorders compared to using feedstuffs high in starch. The objective was to study the effects of inclusion of ensiled pressed beet pulp in total mixed rations (TMR) for high-yielding dairy cows. Two TMR containing no or about 20% (on dry matter (DM) basis) beet pulp silage were used. The beet pulp silage mainly replace...

متن کامل

The dynamics of the bacterial communities developed in maize silage

Ensilage provides an effective means of conserving summer-grown green forage to supply as winter feed to ruminants. The fermentation process involved in the ensilage process relies on lactic acid bacteria (LAB). Here, 16S ribosomal DNA amplicon pyrosequencing was used to follow the dynamic behaviour of the LAB community during the ensilage of maize biomass, with a view to identify the key speci...

متن کامل

Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates

This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015